首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4111篇
  免费   178篇
  国内免费   33篇
化学   2739篇
晶体学   29篇
力学   160篇
数学   409篇
物理学   985篇
  2023年   31篇
  2022年   84篇
  2021年   198篇
  2020年   163篇
  2019年   157篇
  2018年   175篇
  2017年   123篇
  2016年   173篇
  2015年   161篇
  2014年   173篇
  2013年   327篇
  2012年   264篇
  2011年   291篇
  2010年   170篇
  2009年   147篇
  2008年   151篇
  2007年   175篇
  2006年   129篇
  2005年   135篇
  2004年   90篇
  2003年   79篇
  2002年   62篇
  2001年   68篇
  2000年   51篇
  1999年   47篇
  1998年   18篇
  1997年   21篇
  1996年   32篇
  1995年   37篇
  1994年   30篇
  1993年   34篇
  1992年   33篇
  1991年   42篇
  1990年   20篇
  1989年   22篇
  1988年   30篇
  1987年   27篇
  1986年   26篇
  1985年   39篇
  1984年   23篇
  1983年   24篇
  1982年   23篇
  1981年   12篇
  1980年   30篇
  1979年   21篇
  1978年   27篇
  1977年   27篇
  1976年   19篇
  1973年   11篇
  1968年   10篇
排序方式: 共有4322条查询结果,搜索用时 275 毫秒
71.
72.
The possibility of using silver nanoparticles (AgNPs) to enhance the plants growth, crop production, and control of plant diseases is currently being researched. One of the most effective approaches for the production of AgNPs is green synthesis. Herein, we report a green and phytogenic synthesis of AgNPs by using aqueous extract of strawberry waste (solid waste after fruit juice extraction) as a novel bioresource, which is a non-hazardous and inexpensive that can act as a reducing, capping, and stabilizing agent. Successful biosynthesis of AgNPs was monitored by UV-visible spectroscopy showing a surface plasmon resonance (SPR) peak at ~415 nm. The X-ray diffraction studies confirm the face-centered cubic crystalline AgNPs. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques confirm the rectangular shape with an average size of ~55 nm. The antibacterial and antifungal efficacy and inhibitory impact of the biosynthesized AgNPs were tested against nematode, Meloidogyne incognita, plant pathogenic bacterium, Ralstonia solanacearum and fungus, Fusarium oxysporum. These results confirm that biosynthesized AgNPs can significantly control these plant pathogens.  相似文献   
73.
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.  相似文献   
74.
In the current study, in vitro antimicrobial and antioxidant activities and in vivo anti-inflammatory and analgesic activities of Scutellaria edelbergii Rech. f. (crude extract and subfractions, i.e., n-hexane, ethyl acetate (EtOAc), chloroform, n-butanol (n-BuOH) and aqueous) were explored. Initially, extraction and fractionation of the selected medicinal plant were carried out, followed by phytochemical qualitative tests, which were mostly positive for all the extracts. EtOAc fraction possessed a significant amount of phenolic (79.2 ± 0.30 mg GAE/g) and flavonoid (84.0 ± 0.39 mg QE/g) content. The EtOAc fraction of S. edelbergii exhibited appreciable antibacterial activity against Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains and significant zones of inhibition were observed against Gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). However, it was found inactive against Candida Albicans and Fusarium oxysporum fungal strains. The chloroform fraction was the most effective with an IC50 value of 172 and 74 µg/mL against DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays, in comparison with standard ascorbic acid 59 and 63 µg/mL, respectively. Moreover, the EtOAc fraction displayed significant in vivo anti-inflammatory activity (54%) using carrageenan-induced assay and significant (55%) in vivo analgesic activity using acetic acid-induced writing assay. In addition, nine known compounds, ursolic acid (UA), ovaul (OV), oleanolic acid (OA), β-sitosterol (BS), micromeric acid (MA), taraxasterol acetate (TA), 5,3′,4′-trihydroxy-7-methoxy flavone (FL-1), 5,7,4′-trihydroxy-6,3′-dimiethoxyflavone (FL-2) and 7-methoxy catechin (FL-3), were isolated from methanolic extract of S. edelbergii. These constituents have never been obtained from this source. The structures of all the isolated constituents were elucidated by spectroscopic means. In conclusion, the EtOAc fraction and all other fractions of S. edelbergii, in general, displayed a significant role as antibacterial, free radical scavenger, anti-inflammatory and analgesic agents which may be due to the presence of these constituents and other flavonoids.  相似文献   
75.
The fluids containing nanoparticles have enhanced thermo-physical characteristics in comparison with conventional fluids without nanoparticles. Thermal conductivity and viscosity are thermo-physical properties that strongly determine heat transfer and momentum. In this study, the response surface method was firstly used to derive an equation for the thermal conductivity and another one for the viscosity of bioglycol/water mixture (20:80) containing silicon dioxide nanoparticles as a function of temperature as well as the volume fraction of silicon dioxide. Then, NSGA-II algorithm was used for the optimization and maximizing thermal conductivity and minimizing the nanofluid viscosity. Different fronts were implemented and 20th iteration number was selected as Pareto front. The highest thermal conductivity (0.576 W/m.K) and the lowest viscosity (0.61 mPa.s) were obtained at temperature on volume concentration of (80 °C and 2%) and (80 °C without nanoparticle) respectively. It was concluded that the optimum thermal conductivity and viscosity of nanofluid could be obtained at maximum temperature (80 °C) or a temperature close to this temperature. An increase in the volume fraction of silicon dioxide led to the enhancement of thermal conductivity but the solution viscosity was also increased. Therefore, the optimum point should be selected based on the system requirement.  相似文献   
76.
A novel, highly sensitive, simple, and rapid strategy was designed and developed for simultaneous determination of cabozantinib (CBZ) as an anticancer agent and its main metabolites including monohydroxy sulfate (EXEL-1646), N-oxide (EXEL-5162(, amide cleavage product (EXEL-5366), and 6-desmethyl amide cleavage product sulfate) EXEL-1644). Measurements were done through a micellar liquid chromatography (MLC) method coupled with fluorescence detection. The high-performance liquid chromatography (HPLC) was performed using a Kinetex C18 100 Å column as well as acetonitrile, cetyltrimethylammonium bromide (CTAB; 0.2 mol.L?1), and tris buffer (pH 8.5) solutions as the mobile phase at a 40:50:10 (v/v) ratio. The method’s linearity (20 to 700 ng.mL?1), limit of detection (LOD; 2.11 to 3.69 ng.mL?1), limit of quantification (LOQ; 20 to 30 ng.mL?1), intra- and inter-day precisions (RSD < 4.00%), selectivity, recovery, and robustness were fully evaluated. According to the obtained results, the developed method can be used for simple and rapid (~35 min) quantification of CBZ as an anticancer drug and its major metabolites in human serum samples with high sensitivity and low cost.  相似文献   
77.
By using a convergent methodology, a novel series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole–triazole core was synthesized, and the structures of these hybrid molecules, 9a–k , were corroborated through spectral analyses. The in vitro studies of these multifunctional molecules demonstrated their potent carbonic anhydrase inhibition relative to the standard used. The kinetics mechanism was exposed by Lineweaver–Burk plots, which revealed that 9j inhibited carbonic anhydrase non-competitively by forming an enzyme-inhibitor complex. The inhibition constants Ki calculated from Dixon plots for this compound was 1.2 μM. The computational study was also persuasive with the experimental results, and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to carbonic anhydrase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for various diseases related to the uncontrolled production of this enzyme.  相似文献   
78.
The present research highlights physical significance of green combination of metal oxide nanomaterials utilizing medicinal plant which has widely analyzed in different medical applications i.e., medicinal science, therapeutics. In this paper, we discussed environmentally benign approach for synthesizing silver doped copper oxide nanoparticles (Ag–CuO NPs) utilizing (ACLE). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were utilized to confirm the size, crystalline structure and surface morphology of the obtained nanomaterials. The monoclinic crystalline structure of the Ag–CuO NPs as produced was revealed by XRD patterns. Morphological analysis disclosed the nano-based spherical configuration of Ag–CuO NPs, as well as their morphology and elemental composition. The anti-diabetic effect of Ag–CuO NPs was further investigated utilizing a yeast cell model and amylase inhibition. Here, a decrease in intracellular glucose and a delay in carbohydrate digestion indicate promising antidiabetic action. Furthermore, the prepared nanomaterial showed anticancer potential against the MCF-7 cancer cell line, with an IC 50 value of 11.21 g/ml.  相似文献   
79.
For this research, an examination on the magnetohydrodynamic flow of a micropolar fluid across a moving vertical porous plate for the presence of thermal radiation is achieved. It is necessary to translate the partial differential equations regulating the flow, heat, & mass transfer into dimensionless form employing proper non-dimensional variables, which are then cracked numerically by utilizing the Finite difference approach. Graphs are used to represent numerical values of various flow profiles; however, tables are used to represent the simulated values of rate coefficients. The velocity rises when the value of Grashof number, dimensionless viscosity ratio is raised, and the opposite effect is seen when the value of magnetic parameter, micro-gyration factor is raised. The result in skin friction coefficient improves when the values of magnetic parameter, micro-gyration factor, Prandtl number, and radiation are raised higher.  相似文献   
80.
Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early-stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high-throughput separation of MDA-231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single-stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two-stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high-speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA-231 CTCs from similar sized WBCs at a high Re of 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA-231 CTCs is expected to be sustained after separation due to the short-term DEP exposure. The developed technique could be exploited to design active microchips for high-throughput separation of mixed cell beads despite their significant size overlap, using DEP-modified inertial focusing controlled simply by adjusting the applied external field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号